## (03 Hours)

[Total Marks: 80]

N.B.: (1) Question No:01 is compulsory

- (2) Attempt any Three Questions from remaining Five Questions.
- (3) Assume suitable data where ever is necessary and justify the same.
- (4) Illustrate the answers with sketches wherever required.
- (5) Answer to the questions should be grouped and written together.
- (6) Assumptions made should be clearly stated.

## Q.1 Answer any FIVE

4×5

- i) Define the flexibility and stiffness influence coefficients. What is the relation between them? (20)
- ii) Write a short note on "Experimental Modal Analysis".
- iii) Explain working of Digital Analyzer with block diagram.
- iv) What are causes of non-linear vibrations?
- v) Write a short note on basic signal attributes.
- vi) Explain a jump phenomenon with a suitable example.

Q.2

- (A) Write a note on Spectrum Analyzers and Band pass Filter.
  - (10)
- (B) Write a note on damage detection in structures using changes in modal [10] frequency and mode shapes.
- Q.3 (A)
- Derive the equations of motion of the spring-mass-damper system as (10) shown in the following figure:
  - i) Express the equation of motion in matrix form and write the mass, damping and stiffness matrices.
  - ii) Write the mass, damping and stiffness matrices in their most general form.
  - iii) Explain static and dynamic coupling



(B) Design a velometer if the maximum error is to be limited to 1 percent of the true velocity. The natural frequency of the velometer is to be 80 Hz and the suspended mass is to be 0.05 Kg.

[TURN OVER]

(2)

Q.4

(10)Write a note on Semi-Active and Active Vibration Control with (A) practical applications and instrumentation involved in them.

Determine the Eigen values and Eigen vectors of a vibrating system for (B) which

 $[m] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  and  $[k] = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ 

Q.5

Discuss the methodology of diagnosis of unbalance, misalignment and (10)(A) antifriction bearing defects.

Explain how Lindstedt's Perturbation Method is used to find the (B) solution to a nonlinear vibration problem.

(10)

Q.6

What is the source of nonlinearity in Duffing's equation? What is the (A) difference between hard spring and soft spring? Explain Jump Phenomenon.

A stereo turntable, of mass 1 kg, generates an excitation force at a (10) (B)frequency of 3 Hz. If it is supported on a base through a rubber mount, determine the stiffness of the rubber mount to reduce the vibration transmitted to the base by 80 percent.